Deconstructing Atlantic Intertropical Convergence Zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific
نویسندگان
چکیده
[1] We investigate causes of interannual variability in Atlantic Intertropical Convergence Zone (ITCZ) convection using a monthly mean global precipitation data set spanning 1979–1999. Starting from the hypothesis of two dominant influences on the ITCZ, namely, the cross-equatorial gradient in tropical Atlantic sea surface temperature (SST) and the anomalous Walker circulation due to the rearrangement of tropical Pacific convection associated with the El Niño–Southern Oscillation, we analyze anomaly composites over the 1979–1999 period that best isolate the effects of each mechanism. Our results suggest that to first order, a strong anomalous Walker circulation suppresses precipitation over the tropical Atlantic, whereas an anomalous warm north/cool south SST gradient shifts the meridional location of maximum ITCZ convection anomalously north. We examined the processes underlying each of the two mechanisms. For the anomalous Walker circulation we find consistency with the idea of suppression of convection through warming of the tropical troposphere brought about by anomalous convective heating in the eastern equatorial Pacific. For the SST gradient mechanism our results confirm previous studies that link convection to cross-equatorial winds forced by meridional SST gradients. We find that positive surface flux feedback brought about through the cross-equatorial winds is weak and confined to the deep tropics. On the basis of the results of this and other studies we propose an expanded physical picture that explains key features of Atlantic ITCZ variability, including its seasonal preference, its sensitivity to small anomalous SST gradients, and its role in the context of tropical Atlantic SST gradient variability.
منابع مشابه
Tropical Atlantic Variability: Patterns, Mechanisms, and Impacts
This chapter reviews the progress made in the past decade in understanding tropical Atlantic climate variability. In addition to an equatorially anti-symmetric seasonal cycle forced directly by the seasonal march of the sun, Atlantic sea surface temperature (SST) displays a pronounced annual cycle on the equator that results from continental monsoon forcing and air-sea interaction. This cycle i...
متن کاملLocal and remote atmospheric response to tropical instability waves: A global view from the space
A La Niña took place in the equatorial Pacific in 1999, and strong tropical instability waves (TIWs) developed, causing large meanders of a sea surface temperature (SST) front between the equator and 3◦N. High-resolution satellite measurements are used to describe the variability of SST, surface wind velocity, column-integrated water vapor, cloud liquid water and precipitation associated with t...
متن کاملSeasonal influence of ENSO on the Atlantic ITCZ and equatorial South America
[1] In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind str...
متن کاملOscillations of the Intertropical Convergence Zone and the genesis of easterly waves Part II: numerical verification
A companion paper (Part I: Toma and Webster 2008), argued that the characteristics of the mean Intertropical Convergence Zone (ITCZ) arise from instabilities associated with the strong cross-equatorial pressure gradient (CEPG) that exists in the eastern Pacific Ocean as a result of the latitudinal sea-surface temperature (SST) gradient. Furthermore, it was argued that instabilities of the mean ...
متن کاملKey factors in simulating the equatorial Atlantic zonal sea surface temperature gradient in a coupled general circulation model
[1] Causes of the coupled model bias in simulating the zonal sea surface temperature (SST) gradient in the equatorial Atlantic are examined in three versions of the same coupled general circulation model (CGCM) differing only in the cumulus convection scheme. One version of the CGCM successfully simulates the mean zonal SST gradient of the equatorial Atlantic, in contrast to the failure of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001